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ABSTRACT 

The world of mathematics has been confined to the linear world. That is to say, 

mathematicians and physicists have overlooked dynamical systems as random and 

unpredictable. However, the problem arises that we humans do not live in an even remotely 

linear world; in fact our world should indeed be categorized as non-linear. 

This dissertation has been designed to be a descriptive version of non-linear dynamical 

system through Cellular Automata and making it speculative and thought provoking. A brief 

view of some of the basic properties of Cellular Automata (CA) and its application is explained 

in the presented paper. 
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I. INTRODUCTION 

 

1.1 DYNAMICAL SYSTEM 

In mathematics, a dynamical system is a system in which a function describes the 

dependence of a point in a geometrical shape. It is a system which changes from time to time. 

Examples include the mathematical models that describe the swinging of a clock pendulum, 

the flow of water in a pipe, and the number fish each springtime in a lake. 

 

 

This dynamical system is classified into two types, such as 

1. Discrete dynamical system 

2. Continuous dynamical system. 
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A discrete dynamical system is a dynamical system whose state evolves over state space 

in discrete time steps according to a fixed rule. In continuous dynamical system, quantity 

changes value over continuous time interval. 

We are going to discuss discrete dynamical system in detail. 

1.2 DISCRETE DYNAMICAL SYSTEM. 

A dynamical system is called to be a discrete if time is measured in discrete steps. To be 

more precise, a sequence of numbers that are defined recursively, that is, there is a rule relating 

each number in the sequence to the previous in the sequence. [1] 

Thus in general, the equations that describe a relationship between one point in time and a 

previous point in time are called discrete dynamical system or difference equation. 

EXAMPLES. 

Consider the sequence 0,  1,  2,  3 … Denoting each of these numbers by a (k),

 for k= 0, 1, 

2, 3… we note that the rule relating the numbers is A (n+1) = A (n) + 1. 

In Genetics, the genetic characteristics change from generation to generation and 

the variable representing a generation is a discrete variation. 

In Economics, the price changes are considered from one period to another, say 

year, month, and week of day. Here the time variable is discretized. [1] 

In Population Dynamics, there are changes in population from one group to another and the 

variable representing the age group is a discrete variable. 

1.2.1 TYPES OF DISCRETE DYNAMICAL SYSTEM. 

1) LINEAR DYNAMICAL SYSTEM. 

When the function is linear ad goes through the origin, such dynamical 

system is called  linear dynamical system. The linear dynamical system is further 

subdivided into 

a.) Linear Homogeneous 

b.) Linear Non-Homogeneous. 

2) AFFINE. 

When the function is linear and does not go through the origin is called affine 

dynamical 

system. 

3) NON-LINEAR DYNAMICAL SYSTEM. 

Consider A (n + 1) = 3 A (n) [1 – A (n)]. If the function is not linear then 

such a dynamical system is called non-linear dynamical system. The dynamical 

system is further divided into 

a.) Non-linear Homogeneous 

b.) Non-linear Non-Homogeneous. 

4) AUTONOMOUS DYNAMICAL SYSTEM. 

Consider the dynamical system A (n + 1) = f [A (n)]. When the Co-efficient 

of A(n) does not depend on ‘n’ we call dynamical system as Autonomous 

Dynamical system. The Autonomous Dynamical system is further divided into 

a.) Liner Autonomous 

b.) Non-Linear Autonomous. 
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5) NON-AUTONOMOUS DYNAMICAL SYSTEM. 

Consider the dynamical system A (n + 1) = f [n, A (n)] when the Co-

efficient of A (n) depends on ‘n’ we call the dynamical system Non-Autonomous 

dynamical system. This Non- 

Autonomous dynamical system is divided into 

a.) Linear Non-

Autonomous b.) Non-

linear Autonomous. 

1.3 FIXED POINT 

Consider a first order dynamical system A (n + 1) = f [A (n)]. A number ‘a’ is called 

an equilibrium value or fixed point for this dynamical system if A (k) = a, for all values of k. 

1.4 PERIODIC SOLUTION 

A solution A (k) is periodic if A (k + m) = A (k). For some fixed integer m and all k. 

the smallest integer ‘m’ for which this holds is called the period of the solution. 

1.5 COBWEB 

Suppose we have a dynamical system A (n + 1) = f [A (n)] with A (0) given. Draw a 

graph of the  curve Y = f(x) and the line Y = x. Pick the first x value A (0) and go vertically to 

a point on curve. Then go horizontally to a point on line. Then go horizontally to a point on line 

The Co-ordinate of the point on the line is A (1). Repeat these steps to get A (2), A (3)… The 

resulting figure is called a cobweb for the given dynamical system. 

1.6 CYCLE 

Two numbers a₁ and a₂ form a cycle for a first order dynamical system if when A 

(n) = a₁ then a (n + 1) = a₂ and A (n+1) = a₁ and so on. 

 

 

1.7 NON-LINEAR MAP AND ITS CHARACTERISTIC. 

There are different types of Non-linear maps as follows; 

 Tent map 
 Logistic map 
 Martin map 
 Henon map 
 Lorenz map 

 Rossler map 

1. Tent map 

Tent map is defined by S (n + 1) = 2 S (n), S (n) Є (0, 0.5) 

= 2 [1-S (n)], S (n) Є (0.5, 1) 

2. Logistic map 

Logistic map is defined by X (n + 1) = r X (n) [1-X (n)] 

3. Henon map 

Henon map is defined by X (n +1) = 1+ Y (n) – aX² (n) 

Y (n+1) = bx (n). 

4. Lorenz map 

Lorenz map is defined by X (n + 1) = X (n) – a X (n) dt 
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+a Y (n) dt Y(n +1) = Y(n) = bX(n)dt – Y(n)dt – 

Z(n)X(n)dt 

Z(n +1) = Z(n) – cZ(n)dt + X(n)Y(n)dt. 

5. Rossler Attractor 

The attractor is formed with another bunch of Navier Strokes 

equations namely X (n+1) = X (n) – Y (n) dt + Z (n) dt 

Y (n+1) = Y (n) + X (n) dt + Y (n) dt 

Z(n+1) = Z(n) + bdt + X(n)Z(n)dt – 

cZ(n)dt. 

 

 

 

1.8 CHAOTIC DYNAMICAL SYSTEM 

A Dynamical system is said to be chaotic under the following condition. 

1) A dynamical system is transitive if a₀ is close to S, then A(k) gets closer to every point in 

S. 

2) A dynamical system has sensitive dependence if whenever we take a₀, b₀ close to 

each other as initial values, then A(k) and B(k) eventually get apart. [4] 
3) A dynamical system has a continuous broad band Fourier power spectrum. 
4) Ergodicity: (Xₜ+ N, Yₜ+ N) is obtained from a map. Sooner or later a new value 

[Xₜ + N, Yₜ + N] arbitrarity close to [Xₜ, Yₜ] will be found. This is a Chaotic 

Cignal. 

5) Chaotic Dynamical system has at least one positive Lyapunov exponent. 

 

 

II. REVIEW OF LITERATURE. 

Many Authors have discussed about cellular automata and its applications. Some Authors 

have analysed cellular Automata and partial differential equations. Some authors have studied 

cellular automata through Fractal dimension. Some Authors have studied cellular automata and 

graph theory. Here we have discussed about some of the authors who have studied the cellular 

automata through its application. 

1. May R. M. 

May R.M[1976] in his article titled “Simple Mathematical Models with very 

complicated Dynamics “ in the Journal “Nature” ; gives complete picture about discrete 

Mathematical Models which are Non-Linear and its Chaotic behaviour with regard to 

complicated Dynamics. 

2. James T.Sandefur 

James T.Sandefur [1998] in his book on “Discrete Dynamical System, Theory & 

Application” study in detail various Linear & Non-Linear models leading to Chaotic 

Behaviour. 

3. Kraft R.L. 

Kraft R.L. [1999] in his article “Chaos Cantor Set and Hyperbolicity for the Logistic 

Map”- American Mathematical monthly studied in detail about logistic map with reference to 

cantor set. 
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4. Tommaso Toffoli 

Tommaso Toffoli, MIT Laboratory for Computer Science, Cambridge, U.S.A., made a 

study under the topic “Cellular Automata as an Alternative to Differential Equations in 

Modeling Physics”, which was published in the journal “Physica” 10D in 1984. 

5. Grassberger 

P. Grassberger, in 1984, made a study under the topic “Chaos and Diffusion in 

deterministic Cellular Automata”, which was published in the journal “Physica” 10D. In this 

paper it is shown that the deterministic one-dimensional CA studied recently by Wolfram 

exhibit a kind of spontaneous symmetry breaking. 

6. Stephen J. Willson 

Stephen J.Willson, Department of Mathematics, Lown State University, U.S.A., made a 

study under the topic, “Growth Rates and fractional Dimensions in CA”, which was published 

in the journal “Physica” 10D in 1984. This paper concerns some different ways by which a 

fractional dimension may be associated to a CA whose transition rule is linear modulus ‘p’. 

7. George T. Yurkon 

George T. Yurkon, in the year 1997, discussed the scientific meaning of the word chaos in 

his article “Introduction to Chaos and Its Real world Application”. This article discusses on 

how understanding chaos may be of great benefit to mankind. He talks about the literal 

explosion of scientific interest in chaos and how to control it. 

8. A.R.Kansal 

In the year 20, A.R.Kansal, Department of chemical Engineering, Department of 

Chemistry, presented a paper in “Stimulated Brain Tumor Growth Dynamics Using a three 

dimensional Cellular Automaton” which  was published in the journal Theortical Biology, 

Volume: 203. This paper also predicts the composition and the dynamics of the tumor at 

selected time points in agreement with medical literature. 

 

 

 

9. Yousef Al- Assaf, Reyad El-Khazali, Wajdi Ahmed: 

Yousef Al- Assaf, American University of Sharjah, U.A.E., Reyad El-Khazali, Etisalat 

college of Engineering, U.A.E.; Wajdi Ahmed, University of Sharjah, U.A.E., presented a 

paper on the topic “ Identification of fractional Chaotic system parameters” which was 

published in the journal “Chaos, Solitons and Fractals – the interdisciplinary journal for Non – 

linear  Science, Nano and Quantum technology “, Volume:22, in the year 2004. 

III. CELLULAR AUTOMATA 

The increasing prominence of computers has led to a new way of viewing nature as a form of 

computation. 

That is, we treat objects as simple ROBOTS, Each obeying its own set of laws. 

• Cellular Automata (CA) were introduced by John Von Neumann, in the 1940’s and 
described by  Arthur Burks, in 1970. 

 

• During the 1970’s and 1980’s Cellular Automata had a strong revival through the 

work of Stephen Wolfram, who published an interesting survey. 

 

• Today CA had become a very important modeling and simulation tool in science and 

technology, from physics, chemistry and biology to computational fluid dynamics in 
airplane and ship design, to philosophy and sociology. 
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3.1 OVERVIEW: 

 CA is a branch of automata, which is a branch of computer science. 

 A cellular automaton is an array of identically programmed 

automata or “cells” Which interact one another. 

 It is a dynamical system in which cells are generated according to some law. 

 The arrays usually form either a 1-dimensional string of cells, a 2-dimensional grid, or 
a 3-dimensional solid. 

 

3.2 DEFINITION: 

• Discrete in both space and time, 

• Homogeneous in space and time (same update rule at all cells at all times), 

• Local in their interactions. 

 

 

A cellular automaton is a model of a system of “cell” objects with the following characteristics. 

 

1) Grid. The simplest grid would be one-dimensional: a line of cells. 

2) S 

t 

 

 

 

. The simplest set of states (beyond having only one state) would be two states: 0 or 1. 

 

 

 

1 0 1 0 1 1 1 0 0 1 

 

3) Neighbourhood. The simplest neighbourhood in one dimension for any given cell 

would be the cell itself and its two adjacent neighbours: one to the left and 

one to the right. 

 
1 0 1 0 1 1 1 0 0 1 

a 

t 

e 

s 
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The automaton can be 1 – dimensional where its cells are simply linked up  like  a  chain  

or  2- dimensional where cells are arranged in an array covering the plane. To run a  cellular  

automaton  we  need two entities of information: 

 

a) An initial state of its cells (i.e. an initial layer) 

b) A set of rules of laws 

 

These rules describe how the state of a cell in a new layer. ( In  the next  step) is 

determined  from the states of a group of cells  from the preceding layer.  The rules should 

not depend on  the position  of  the group within the layer. 

 

3.3 ATTRACTING AND REPELLING FIXED POINTS: 

 

Cellular Automata evolve after a finite number of times steps from almost all initial 

states to  unique homogenous state, in which all sites have the same value. Such  CA  may  

be  considered  to involve to simple “attracting fixed points”. 

 

If the sites repel away from a fixed point, then those points are known as repelling fixed points. 

 

EXAMPLE 1: [a] 

 

F(a b c) = (b + c) (mod2),A = {0,1} 

 

LOCAL RULE TABLE: 

 
A B c F(a,b,

c) 
0 0 0 0 

0 0 1 1 

0 1 0 1 

0 1 1 0 

 

Table 1: local rule table for example  1 

 

EXAMPLE 2: 

 

F( a,b,c) = max {a,b}, A={0,1,2} 

 

 

 

LOCAL RULE TABLE: 

 
A b c F(a,b,

c) 
0 0 0 0 

0 0 1 0 

0 1 0 1 

0 1 1 1 

 

Table 2: local rule table for example  2 

 

For different initial configuration, different CA can be generated. 
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3.3.1 THE TECHNICAL TERMS USED: 

 

Trajectory 

Periodic point 

Eventually periodic point 

Right most primitive 

Transitive 

Sensitive 

 

3.4 SIMPLE CELLULAR AUTOMATA: 

 

In some sense we might say that Pascal triangle is the first CA. It sets a good 

example for  CA. Pascal triangle is a mathematical triangle made up of staggered rows of 

numbers. 

 

The initial conditions used are: 

 

 

Where i-the row number, 

The cells in the Pascal triangle are generated using the law, 

 

 

Where, i = the row 

number j = the column 

number 

 

 

 

3.4.1 PASCAL TRIANGLE 

 

 

 

Aᵢ₁ = 1, Aᵢᵢ = 1 

Aij=a(i-1) + a(i-1)j 

http://www.jetir.org/


© 2015 JETIR December 2015, Volume 2, Issue 12                                                      www.jetir.org (ISSN-2349-5162) 

JETIR1701221 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1245 
 

 

 

3.4.2 PASCAL TRIANGLE MODULO: 

 

 

 

 

On replacing is by dot and 0’s by blank space, takes from the above diagram 

3.4.3 PASCAL TRIANGLE – A MODIFICATION 

 

 

A beautiful aspect of Pascal triangle modulo 2 is that the pattern inside any triangle of 

points is similar in design to that of any Sub-triangle though larger in size. If we extend Pascal 

triangle to infinitely many rows and reduce the scale of our picture in halt each time that we 

double the number of rows, then the resulting design is self-similar known as FRACTALS, 

Cellular Automata is a fractal type dynamical system. 

 

 

3.5 WILFRAM CLASSIFICATION. 

 

Before we move on to looking at CA in two dimensions, it’s worth taking a  brief  look  

at Wolfram’s classification for cellular automata. As we noted earlier, the vast majority of 

elementary CA rule sets produce uninspiring results, while some result in wondrously  

complex  patterns  like  those found in nature. Wolfram has divided up the range of 

outcomes into four classes: 

 

1: Uniformity. Class 1 CAs end up, after  some number  of generations, with  every cell 

constant. This  is not terribly exciting to watch. Rule 222 is a class 1 CA; if you run it for  

enough generations, every cell will eventually become and remain black. 

2: Repetition. Like class 1 CAs, class 2 CAs remain stable, but the cell states are not 
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constant. Rather, they oscillate in some regular pattern back and forth from 0 to 1 to 0 to  1 

and so on. In  rule 190, each    cell follows the sequence 11101110111011101110. 

Class 3: Random. Class 3 CAs appear  random  and have no  easily discernible pattern. In  

fact,  rule 30  is used as a random number generator in Wolfram’s Mathematical software. 

Again, this is a moment  where we can feel amazed that such a simple system with simple 

rules can descend into a chaotic and random pattern 
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Class 4: Complexity. Class 4 CAs can be thought  of  as a  mix  between  class 2  and class 

3.  One  can find repetitive, oscillating patterns inside the CA, but where and wh en these 

patterns appear is unpredictable and seemingly random. Class 4 CAs exhibit the properties 

of complex systems that we described earlier in this chapter and in Chapter 6. If a class 3 

CA  wowed  you,  then a  class 4 like Rule  110 above should really blow your mind. 

3.5.1 Game of life. 

 

We start with a well-known example, Game-of-life, invented 

by John Conway in 1970. It is a cellular automaton that consists of an infinite grid of square 

cells — like an infinite graph paper — where each square is coloured white or black. The colour 

is called the state of the cell. We say that a black cell is alive while a white cell is not. A 

colouring of the entire grid is called a configuration of Game-of-life. 

   

   

   

Figure 1: Example for game of life. 

 

There is a simple local update rule according to which the cells change their states. The 

new state of a cell only depends on the current states of the cell itself and its eight nearest 

neighbours: 

Here black = 1, and white = 0. 

1. Death. If a cell is alive (= 1) it will die (becomes 0) under the following circumstances. 

 
o Overpopulation: If the cell has four or more alive neighbours, it dies. 
o Loneliness: If the cell has one or fewer alive neighbours, it dies. 

 

2. Birth. If a cell is dead (= 0) it will come to life (becomes 1) if it has exactly 

three alive neighbours (no more, no less). 

3. Stasis. In all other cases, the cell state does not change.  To  be  thorough,  let’s  

describe those scenarios. 

 
o Staying Alive: If a cell is alive and has exactly two or three live 

neighbours, it stays  alive. 

o Staying Dead: If a cell is dead and has anything other than three live 
neighbours,  it  stays dead. 

 

All cells use the same update rule, and all cells change their states simultaneously. This 

changes the colouring of the grid, i.e. the configuration changes into a new one. The process 

is then repeated over and over again, which creates a time evolution of the system. 
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IV. APPLICATIONS 

 

4.1 ADDITIVE CELLULAR AUTOMATA. 

 

4.1.1 RULE 250: 

 

Rule 250 specifies the next colour in a cell, depending on its colour and its immediate 

neighbours. Its rule outcomes are encoded in the binary representation . This 

rule is illustrated with the evolution of a single black cell it produces after 15 steps (OEIS 

A071028; Wolfram 2002, p. 55). For initial conditions of a single black cell, this rule 

produces identical evolution to rules 50, 58, 114, 122, 178, 186, and 242, which are precisely 

those with binary representation . 

Rule 250 is a generalized additive elementary cellular automata under the operation OR( ) (Wolfram 

2002, p. 952), where is the value of the neighbouring cell to the left and is the value of the 

neighbouring cell to the right. 

 

 

Figure 2: Diagrammatic representation of rule 250. 

 

 

 

4.1.2RULE 60: 

 

Rule 60 specifies the next colour in a cell, depending on its colour and its immediate 

neighbours. Its rule outcomes are encoded in  the binary representation . This 

rule is illustrated with the evolution of a single black cell it produces after 15 steps (OEIS 

A075438; Wolfram 2002, p. 55). 

 

Starting with a single black cell, successive generations are given by interpreting the 

numbers 1, 3, 5, 15, 17, 51, 85, 255, 257, 771, 1285, ... (OEIS A001317) in binary (where 

left cells in step of the 

triangle 
are always 0), namely 1, 11, 101, 1111, 10001; ... (OEIS A047999). 

 

The mirror image is rule 102, the complement is rule 195, and the mirrored complement 

is rule 153.  Rule 60 is one of the eight additive elementary cellular automata. 
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Figure 3: Diagrammatic representation of rule 60. 

 

 

 

4.1.3RULE 90 

 

A simple example of an additive cellular automata on is provided by the rule 90. 

Elementary cellular automata on as can be seen from the graphical representation of this rule. 

The rule has a function of left central and right neighbours. Is simply given by the sum of the 

rules for the left and the right neighbours taken modulo to, where white cells are assigned the 

value 0 and the black cells are assigned the value1 (this is equivalent to  the XOR operation 

and means that “adding” two white cells or two blacks cells gives a white cell, while adding 

one white cell and one black cell gives a black cell). 

 

 

 

For example, the rule for (1,1,1) is 1 + 1 = 0(mod 2), 

 

The rule for (1,1,0) is 1 + 0 = 1(mod 2) 

 

The rule for (1,0,1) is 1 + 1 = 0(mod2) and so on. Repeating this for each of the 2 x 2 x 2 =8 

possible states of neighbours gives the binary representation . 

 

Rule 90 is amphichiral, and its complement is rule 

165. 

 

 

Figure 4: diagrammatic representation of rule 90. 
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Similarly we have rules from 0 to 255. Some of 

them are…. 

 

 

 

Figure 5: diagrammatic representation of some other rules in CA. 

 

 

 

 

4.2 IN LINEAR PARTIAL DIFFERENTIAL EQUATIONS. 

A. DOESCHL*, M. DAVISON, H. RASMUSSEN AND G. REID, Department of 

Applied Mathematics, University of Western Ontario London had done a paper on “Assessing 

Cellular Automata Based Models Using Partial Differential Equations.” The main goal of this 

study was to demonstrate how partial differential equations can be used to assess numerical 

models arising from a cellular automata approach. The study focused on two rival numerical 

models for morphological processes in river beds. 

The relationship between the numerical cellular automata based models and partial 

differential equations was established by viewing the models as numerical solution schemes of 

partial differential equations with initial and boundary values derived from the governing 

equations of the cellular models. 

But in our paper as a result of additivity, the evaluations of additive cellular automata 

behave similarly to the solutions of linear partial differential equations. The resulting evolution 

can be found by convolving the evolution of a single cell with the initial condition. (Wolf ram 

2002, P.952) [7] & [10] 

Cellular automata can be applied to get the behaviour of the solution of a linear partial 

differential equation. A Linear partial differential equation can be solved by any method. If S₁, 

& S₂ be two solution of a linear partial differential equation, then S₁ + S₂ is also a solution of 

the linear partial differential equation. This concept is very much displayed by additive cellular 

automata. A linear partial differential equation is  discretized. Then the solution can be obtained 

by any one method available. A suitable cellular automata can also be formed for the solution 

of a linear partial differential equation. Cellular automata formed – gives the behaviour of the 

solution of a linear partial differential equation. If two solutions are obtained. Then linear 
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combination of two solution is also a solution of the linear partial differential equation. This is 

very much illustrated using the concepts of additive cellular automata. 

4.3 APPLICATIONS IN BIOMEDICAL SCIENCES 

In the early 1980’s scientists began to apply chaos theory to physiological systems. Many 

organs and systems proved to be fractal in nature. Intuitively, it seems logical that chaos would 

be more apparent in pathological or disease states. 

Fractal techniques have already been applied to a variety of disciplines in medicine. [14]. 

Growth of tumour might to influenced by the fractal structure of their tissues of origin, Tumour 

boundaries and chromatin texture have been studied by fractal analysis and this may prove 

useful in discriminating between benign and malignant cells. Publications on the application of 

chaos and fractals are increasingly seen in a variety of disciplines including ophthalmology, 

neuropathology and urology. Perhaps the most existing prospects for the application of chaos 

theory in medicine are those related to simulation of cancerous growths. [13] 

The identification and characterization of common complex multifactorial human 

diseases remains a statistical and computational challenge. Mathematical tools viz., Cellular 

automata, L- system, etc., serve as a novel computational approach with which we demonstrate 

using simulated data that the approach has good power to identifying high-order, non-linear 

interactions. 

 

 

4.4 CELLULAR AUTOMATA GENERATED INTO GRAPH. 

A Cellular automata generated can be conveniently represented graphically. The 

concept is illustrated with the help of Sierpinski’s triangle. Consider a Sierpinski’s triangle. 

 

 

 
 

Figure 6: Sierpinski’s triangle. 

The corresponding tree topology is represented in. 
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Figure 7: tree topology of Sierpinski’s triangle. 

The corresponding triangle is also represented graphically. 

 

 

 

Figure 8: Graphical representation of Sierpinski’s triangle. 

If we generate more triangles in a Sierpinski’s triangle such as 

 

 

Figure 9: generation of more triangles in Sierpinski’s triangle. 

A corresponding graphical model is derived to represent the cellular automata. 
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Figure 10: graphical model representing cellular automata. 

 

 

Hence for any cellular automata generated we have a graphical representation. It is 

possible to represent graphically Sierpinski’s square, Sierpinski’s pentagon etc., 

V. INFERENCE AND CONCLUSION. 

There are various tools used to gain to gain the comprehensive overview of the non-

linear dynamics via cellular automata. The dynamical system we have studied are called cellular 

automata (CA) which is used as a basic thing to solve partial differential equation. Apart from 

this Cellular automata can be represented graphically using Graph Theoretic Concepts. 

So by applying various tools such as L- system, CA, Non-linear Dynamical system, we 

spread its  wings to different fields. Thus interdisciplinary study with the mixture of CA, L- 

system and Discrete Dynamical system, we have a good scope for its inter presentation and 

analysis of our cosmos. 
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